
FILEMAKER NAMING CONVENTIONS
BEDNAR CONSULTING
Larry Bednar
26Jan2006

PURPOSE

This document provides the Bednar Consulting standard naming conventions for
FileMaker databases. These are based on the Core Solutions naming standards.

ABBREVIATIONS

Strictly speaking, abbreviations are almost never REQUIRED in a FileMaker database -

FileMaker will allow VERY long database, field, relationship and value list names.
However, lists of relationships, fields, and values lists that are present to the
developer in drop-down lists or scroll boxes oftern display only the first 30
characters
or so of a name. If this portion of the name is not distinctive, it may not be
clear
WHICH item in the list is the one desired. Shorter names therefore do provide a
very practical advantage, so long as clarity is not sacrificed.

The ideal is that a word is always represented the same way in all names applied
within an
application. If a word must be abbreviated in one location, it should be
abbreviated in ALL
names where it is used.

It is helpful to maintain a record of standard abbreviations.

The following abbreviations are so frequently beneficial that they are suggested as
generic "standard" abbreviations:

"Abbr" - abbreviation
"Avg" - average
"Db" - database
"Defn" - definition
"Id" - identifier
"Loctn" - location
"Mod" - modification
"Nbr" - number
"Pct" - percent
"Pmt" - payment
"Prop" - proportion
"Rec" - record
"Rel" - relationship
"Rmk" - remark
"Rev" - revision
"Rpt" - report
"Ttl" - total

It is also helpful to establish a standard abbreviation for referencing each
database
and table within an application. These abbreviations are frequently used in key
names,
relationship names, script names.

Page 1

DATABASES/TABLES

1.A database name should indicate the "thing" that is described by a single record
of the database.
 For instance, if each record represents a pet, then the name of the database
should be "Pet".
 If each record represents a word processing document, then the name "Document"
would be
 appropriate. The selected name should be evocative.

2. Database names are generally singular, as plurals make the name longer without
 adding clarity as to what is represented by each record of the database.

3. Special characters other than underscores should not be used in database names.
 (Especially no periods should be used, as this can lead to part of the database
name being
 confused with a file extension in a DOS/Windows operating system.)

4. Database names should not begin with a numeric character (i.e. names should not
begin with
 a "1", "2", "3", etc.)

5. Each component database of an application should be named to include a prefix
that indicates
 the application to which it belongs. Many applications have a "person" or
"address" database,
 it is important to distinguish the "person" databases in different applications.

6. A database name should NOT also be an operating system reserved keyword. (For
instance,
 "rmdir", "mkdir", "ls", "dir", "xcopy", etc). It is also advantages to avoid the
use
 of keywords from SQL or common programming languages (for instance, "date",
"table",
 "delete", "create", etc.)

FIELDS

A. Each field is named to reflect it's information contents. Use of words generally
proceeds from
 general to specific (for example "NameLast" rather than "LastName".

B. No special characters (spaces, quotes, apostrophes, hashes, ampersands, etc.) are
used in
 field names. The only exceptions are underscores and vertical bars.

C. Each word or abbreviation used in a field name is started with an uppercase
character. All other
 characters in the word or abbreviation are lowercase

D. Fields that are used primarily to implement automation mechanisms for the
application
 rather than storing data of direct value to the user are considered "developer
fields".
 These fields are named using the following prefixes:

 "zc_" - a field used to manipulate data (a very general category)
 "zi_" - an "interface" field used in creation of the user interface, to provide
contextual info to

Page 2

 the user, etc.
 "zk_" - a "key" containing the value of a "primary key" that is assigned to
uniquely identify each
 record in a database, a "foreign key" used to uniquely identify a
single related record
 in another database, or a "match key" used to identify a set of
records that match some
 condition of interest in a related database. Name suffixes are
used to distinguish
 each of these cases
 "zl_" - fields the developer uses for field modification tracking
 "zv_" - fields the developer uses to store variable data

 Other fields are considered "user fields" and are named simply to indicate
information
 content clearly. These generally will contain information that would be of
value to the user
 regardless of what internal mechanism might be used in the application.

E. Where appropriate, a suffix is appended that includes and underscore and the
following:

 "g" - indicates a global field
 "l" - indicates a lookup field
 If the value format is not obvious, "b" for boolean, "d" for date, "t" for
time, "n" for number,
 "o" for container, "s" for summary, "t" for text, "i" for index, "yn"
for y/n or yes/no
 "u" - indicates an unstored calculation

 If multiple abbreviations are applicable in the suffix, they are used in the
order provided above.

KEYS - FOREIGN

A "foreign key" is used to hold a value of the primary key for a record of a related
table.

A typical use is to clearly an unambiguously identify a related record. For
instance, it may be
required that a row in the "Daughter" database must identify a single record in the
"BiologicalFather" database.

Foreign keys are named using the following rules:

1. The field name starts with "zk_"

2. The second part of the name is the name of the primary key field referenced in
the "parent"
 database.

3. The third part of the name is the suffix "_f".

KEYS - MATCH

A "match key" is generally used to indicate the records in the current table that
match a value held
in a global variable in another database.

Page 3

A typical use is to identify records that match a search criteria of interest in the
remote database,
for display in a layout portal. For instance a layout in the remote table may
allow the user to
enter a name search pattern for products with descripbons stored in the current
table. A script
is used to fill in a match key value matching the remote global field value for
every record in
the local table that has a name matching the search pattern. A relationship using
the "match key"
field in the local table and the global field in the remote table can therefore be
used as the basis
of a portal that displays all matching rows from the current table.

Match keys are named using the following rules:

1. The field name starts with "zk_"

2. The second part of the name is the application's standard abbreviation for the
remote database
 from which the match originates, followed by an underscore

3. The third part of the name is the name of the global variable in the remote
database that is
 used at that end of the relationship.

4. The suffix "_m" is added

KEYS - PRIMARY

A "primary key" is a field that contains a value assigned in such a way that the
value in any
selected record of the database will uniquely identify that record. No two records
in a table should
ever have the same value in a "primary key" field.

Primary key values are assigned by one of these two techniques:

A. performing a calculation that assembles a random sequence of letters, then
suffixes an
 underscore and the application's standard abbreviation for the database in which
the
 primary key is located.

 Example value: 2A2DMTKN_LOC

B. A value is constructed by concatenation of characters indicating date and time of
 record creation, together with a small sequence of random characters and a suffix
 containing the application's standard abbreviation for the database/table.

 Example value: 060126081105_XAZH_LOC

Primary keys are named as folows:

1. A prefix of "zk_" is used

2. Immediately following the prefix, the application's standard abbreviation for the
database in

Page 4

 which the primary key is located in inserted.

3. The text "_p" is suffixed

The common practice of using a "serial number" field for a primary key is
discouraged
because of the typical difficulties that result when records are transferred from an

obsolete version of a database into a new revision. Such transfers are common and
are
much easier when primay keys are constructed using the techniques outlined here.

RELATIONSHIPS

Each relationship name contains the elements described here:

1. The first portion of the relationship name is a letter that uniquely identifies
the relationship
 among all relationships defined in the database (i.e. "A", "B", ... "AA", "AB",
...)

 This practice is very helpful in clarifying exactly which relationship is being
used in any
 specific troubleshooting endevour. However it does subvert the ability of a
name-based
 sorting of relationships to clump relationships to the same remote database. In
some
 cases, this ability to use sorting may be the more important feature.

2. Part 1 is immediately followed by an underscore and a standard abbreviation for
the "remote"
 database. The "standard" abbreviation used here should be the same abbreviation
used to
 refer to that database throughout the application.

3. Part "2" is immediately followed by a vertical bar and the name of the field used
at the "local"
 end of the relationship.

4. Part 3 is immediately followed by a vertical bar, and the name of the field used
at the "remote"
 end of the relationship. If the field name is the same as the field name at the
starting end of
 the relationship, this may be omitted.

Optionally, a 5th element may be suffixed which indicates any sorting order used in
the relationship

Optionally, abbreviations may be used for field names in order to keep relationship
names short
enough that all necessary elements of the name can be viewed in the "pick lists" for
relationships
that are provided by FileMaker in situations where a developer is asked to pick a
relationship from
a list. Any field name abbreviation that is used should be a fairly obvious
indicator of the
exact field being referenced.

Page 5

VALUE LISTS

A. Each list is named to reflect it's information contents

 Value lists that contain only a single custom value are typically a poor choice.
These
 situations are usually better handled by a yes/no or y/n value list. For
instance: the
 information stored by the field "MbrStatus", applying value list "Mbr_c"
 (only one value: "member"), is probably better handled by a field named "Mbr_yn"
applying
 the value list "YN_c" (values: "N", "Y"). The preferred approach provides
creater clarity,
 stores fewer characters, and does NOT require the use and management of a
special value
 list solely for "member" designation. In the long run, the "Mbr_yn" approach
will be
 easier to manage and use.

B. No special characters (spaces, quotes, apostrophes, hashes, ampersands, etc.) are
used in
 field names. The only exceptions are underscores and vertical bars.

C. Each word or abbreviation used in a name is started with an uppercase character.
All other
 characters in the word or abbreviation are lowercase

D. Each value list name will employ one of the following suffixes:

 "_c" - indicates a custom value list
 "_f" - indicates a value list which references values from one or more fields
 "_v" - indicates a value list which references a value list from another file

E. It is typically beneficial to arrange values within a custom value list in
alphabetical
 order.

 Many cases where a more complex ordering seems tempting are revealed to be poorly

 constructed when examined more closely.

F. It is typically beneficial that all custom value lists in an application should
be
 stored in a single database. These centralized value lists are then referenced
as
 needed from other databases in the application.

 This approach greatly simplifies management of value lists over the long run.

The following value lists are so commonly used that it may make sense to include
them in
every database as a standard:

 YN_c - "N", "Y"
 YNUnk_c - "N", "Y", "unk"

Page 6

