
Form Module Modification
Land Trust Database Project Prototype

Larry Bednar
June 14, 2004

Purpose
This document describes the modifications required for form modules to work correctly within the
prototype land_trust_db_client.mdb MS-Access database.

[LB – I expect I’ve gotten some details incorrect. However, I do believe it is correct for about 95% of
what is provided.]

Copyright/License
Copyright © 2004 Larry Francis Bednar

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the license is included in the document entitled "GNU Free Documentation License".

Edit Forms
A mechanism used to enable/disable navigation buttons related to movement back to a related “record
selection display” form has not yet been implemented in all edit forms. This disables the “selected
records” button if the edit form has been opened directly, and enables that button if the edit form was
opened from the “record selection display” form. Refined versions of this mechanism are yet to be
copied into the Land Trust database from the Land Trust database used for development/refinement.

1. Alter module-level constants appropriately.

2. Alter “cboPrimaryYN_AfterUpdate procedure in forms that present “primary_yn” columns for
user modification.

The procedure must set the label used for the subject area in the message box displayed for the
user.

In these forms, it is typical that only one record of a set is allowed to have a ‘yes’ setting for the
primary_yn column. The cboPrimaryYN_AfterUpdate procedure is used to trigger the
procedure that performs this check and resets other rows to a ‘no’ value if the user has set the
current row to a value of ‘yes’.

3. [LB - ? Changes related to implementation of alterations to cmdNew_Click and EditSelected
procedures? CallingForm Property Let procedure? EnableNavControls procedure?]

Donation Edit Form
Note that the mechanism used to enable/disable controls according to donation type is kind of rough –
use of id values means that change in donation type codes won’t necessarily result in behavior that is
appropriate. Perhaps users should not be allowed to change “donation type” code definitions?

Record Selection Form

The most involving an difficult part of modifying a form module to use SelCtl class modules is the
careful construction of the SQL fragments defining the use of control values within the constructed
base SQL SELECT statement, and within the correlated subqueries used for related tables.

1. Decide which attributes in the database are to be used for record selection.

2. Place controls on the form that are appropriate for the intended record selection purposes.

3. Decide which SelCtl objects should be defined to make appropriate use of the controls now
placed on the form.

SelCtlCbo – Designed to make use of values entered in a combo box or

SelCtlGrp – Designed for construction of filters against a “group membership” table, by
comparing row attributes defining a group, membership start date, and membership stop date to
entries made by the user in a “group” multi-select list box, and an “effective date” text box.

SelCtlLst – Designed to use values entered in a multi-select list box.

SelCtlTxt – Designed to use values in a text box control.

SelCtlTxtSearch – Designed to use values from a text box control into which a text search
pattern is entered.

Form Module Declaration Section
4. Define object variables in the declaration section of the form module for all SelCtl objects that

will be needed.

These should be defined as private, module-scope variables for the form module.

5. Decide which tables will be used as part of the base SELECT statement being constructed by
the form, and which tables will be used in correlated subqueries.

Tables used in subqueries typically will not be defined as part the base SELECT statement. (In
some cases they might be defined both in the base SELECT statement and in a correlated
subquery, but this would be rare.) The base SELECT typically will include only the main topic
table and any associated tables that provide single related rows. “Associations” tables that are
used to resolve many-to-many joins between tables typically will not be part of the base
SELECT statement. The base SELECT statement needs to return one row for each row of the
primary topic table that is matched by the selection conditions entered by the user.

InitSelCtls Procedure
This procedure creates new SelCtl objects corresponding to the module-level SelCtl object
variables defined in the declaration section of the form module. Each SelCtl class has a defined
SetProperties method that should be used. The names of the parameters the developer is
prompted with are a substantial help in understanding what type of parameters must be provided.

A typical sequence of creation statements will be:
 Rem Set SelCtl properties
 Set msclContactMethod = New SelCtlList
 msclContactMethod.SetProperties Me.lstContactMethodDefnId, 1, sclIn, sclNbr, _
 "contact_method_defn_id", "c"

Creation of a SelCtlGrp object is an exception to this general pattern, since this object requires the
specification of a subquery base, a multi-select list box and and a text box to be associated with it.

 Rem Set SelCtl properties
 Set mscgGroup = New SelCtlGrp

 strSubqryBase = "SELECT gm.group_mbr_period_id " & _
 "FROM group_mbr_period AS gm, party AS py " & _
 "WHERE c.party_id=py.party_id " & _
 "AND py.party_id=gm.party_id"
 mscgGroup.SetProperties Me.lstGroupId, Me.txtGroupMbrPeriodEffectiveDate,

scgExists, _
 scgAnyGrp, scgMbr, strSubqryBase, "date_end",

"group_defn_id", _
 "date_start", "gm"

Many of the parameters specified are enumerated constants that are defined to make it easier to
remember the meaning/use of the constants. Typically, these indicate how the values entered in
associated form controls are to be used in the constructed SQL expressions.

NOTE: In each case, the developer must enter the column name and the table alias of the database
column that will be targeted by the SQL expression constructed by the select control object. The
table aliases provided here must correlate correctly to either:

o the table aliases specified in the strcTableList constant in the InitSelCtlObjList
procedure (if they are used as part of the base SELECT statement), or

o the table aliases specified to correspond to “related tables” added to the form’s
SelCtlObjList object in the InitRelatedTables procedure.

Naturally, the table aliases must correspond correctly for the overall SQL SELECT statement to
work properly.

These are several of the table aliases used as “standards” so far:

NOTE: It might be good to spend some time strengthening this system of abbreviations.
I’m not comfortable that the whole system is really quite polished and systematic
enough yet. There are still some additional tables that need to be brought into the
system, also.

ca case

cac case_counselor

cas case_status

co counselor

ct contact

Cm contact_method_defn

Cs contact_subject

Csd contact_subject_defn

Cy county_defn

Del deliv

Dn donation

Dt donation_type_defn

Fa focus_area

Fd fund

Gm group_mbr_period

Gr grant

Gt group_type

Gtd group_type_defn

L loctn

Lt loctn_type_defn

Nm neap_milestone

Np nepa_project

Npc neap_project_contact

o outreach

oe outreach_exp

of outreach_focus

op outreach_party

opr outreach_party_resp

orp outreach_resp

osm outreach_staff_mbr

pt participant

Py party

Pc party_category

Pcr party_contact_role

Pl pledge

Pm party_mbr

Pmr party_mbr_role_defn

Pt party_type_defn

Pn person

Ph phone

Pht phone_type_defn

P pub

Pi pub_issue

R region

Sm staff_mbr

T team

Tm team_mbr

Ts timber_sale

Tsc timber_sale_contact

Tso timber_sale_outreach

Va vol_act

Vad vol_act_defn

Vafa vol_act_focus_area

Vap vol_act_pref

6. Enter an appropriate set of statements for creation of each required SelCtl object.

InitSelCtlObjList Procedure
A single SelCtlObjList object is associated with each record selection form. The SelCtlObjList
object manages the sometimes complex interactions and joint uses of the full set of SelCtl objects
defined for use in the form.

7. Specify the table description part of the base SELECT statement as the value of the
strcTableList constant in the InitSelCtlObjList procedure.

It is probably wise to define table aliases that are standards used throughout the applications.
At a minimum, this makes it easy to understand queries written throughout the application,
since there is no need to reacquaint yourself with new abbreviations in each form module.

8. Specify the join description part of the base SELECT statement as the value of the
strcJoinDesc constant in the InitSelCtlObjList procedure.

Any column references should use the table alias defined for the table in the strcTableList
constant. The “WHERE exp1 AND exp2…” style of equijoin should be used. Outer joins
aren’t supported by the SelCtl class modules.

9. Specify the row description part of the base SELECT statement as the value of the
strcRowDesc constant in the InitSelCtlObjList procedure.

This doesn’t have to be any more than a single column, for instance the primary key of the
“primary topic” table. Any column references should use the table alias defined for the table in
the strcTableList constant.

10. Using the AddSelCtl method of the SelCtlObjList object, add each SelCtl object to the
SelCtlObjList object defined for use by this form.

InitRelatedTables Procedure
This procedure adds information about “related tables” to the SelCtlObjList object created for use
by the form. Each “related table” typically represents a table whose attributes will be employed in
the overall SELECT statement through the use of a correlated subquery. “Association” tables
required to resolve many-to-many joins will typically be used through a “related table” definition
entered into the SelCtlObjList.

NOTE: The table alias entered for the related table must correspond exactly to the table alias
specified for the SelCtl object that provides the values to be used in the subquery. The
SelCtlObjList determines when to construct a subquery by looking for matches of table aliases
specified to SelCtl objects and table aliases defined as part of a “related table” definition.

11. Using the SelCtlObjList object’s AddRelatedTable method, add a definition of a related table
that will be employed in a correlated subquery to the base SELECT statement for the form.

Control GotFocus Procedures

Any form control that is defined as a parameter to a SelCtl object (except those defined as a
parameter to a SelCtlGrp object), must have an associated GotFocus event. The GotFocus event is
used to trigger SelCtlObjList and SelCtl object methods that store the value of the form control at
the time the user enters the control. This allows the user to revert to that original value later.

12. Add a GotFocus event procedure to each form control used in a SelCtl object that is not a
SelCtlGrp object.

The only action required of the GotFocus event is a call to the SetCrrntCtlVal procedure.

Control AfterUpdate Procedures (for SelCtl objects other than SelCtlGrp objects)
Any form control that is defined as a parameter to a SelCtl object (except those defined as a
parameter to a SelCtlGrp object), must have an associated After update event. The AfterUpdate
event is used to trigger SelCtlObjList and SelCtl object methods that query the data server for the
count of rows matching the user’s specifications after the current control update is applied. If no
rows match, the user is offered the option of reverting the control to the value present when they
first entered the control.

NOTE: Because SelCtlGrp objects have two form controls associated with them, the use of
AfterUpdate events will not provide the correct functionality.

13. Add a AfterUpdate event procedure to each form control used in a SelCtl object that is not a
SelCtGrp object.

The only action required of the GotFocus event is a call to the CheckSelCtlChange procedure.

Command Button Procedures for SelCtlGrp objects
Any form control that is defined as a parameter to a SelCtl object (except those defined as a
parameter to a SelCtlGrp object), must have an associated After update event. The AfterUpdate
event is used to trigger SelCtlObjList and SelCtl object methods that query the data server for the
count of rows matching the user’s specifications after the current control update is applied. If no
rows match, the user is offered the option of reverting the control to the value present when they
first entered the control.

14. Add a command button an associated OnClick procedure for each pair of form controls used as
part of a SelCtlGrp object.

The only action required of the GotFocus event is a call to the CheckSelCtlChange procedure.

Assuming that all specifications have been made correctly, the form should now operate correctly.

Selected Records Display Form
[LB – I believe there will be some changes in this section associated with the newly implemented
mechanism for passing record selections to coordinated reports. These will be manifest after revisions
from the Land Trust db project are implemented in Land Trust files…]

1. Set value of module-level constants that define the base query whose return set is display in the
lstRecDisplay list box:

a. Set the value of the mstrcDisplayBaseSelect constant in form module declarations
section – this is the query whose results are displayed in the lstRecDisplay list box.
The SELECT keyword, row description and FROM clause of the SELECT statement
should all be specified here. At present, a trailing space is required to ensure that the

concatenation of this portion of the SELECT statement with the join description is
properly delimited.

b. Set the value of the mstrcDisplayJoinDesc constant in the form module declarations
section – this is contains the SQL expressions that will define the WHERE clause that
properly joins all tables listed in the FROM clause of the SELECT statement

2. Set properties of the lstRecDisplay list box:

c. revise the number of columns and column widths to properly display the columns listed
in the value of the mstrcDisplayBaseSelect constant.

d. revise the RowSource property to include the same SELECT statement constructed by
concatenation of the mstrcDisplayBaseSelect and mstrcDisplayJoinDesc constants.
This ensures that the same columns are displayed in the lstRecDisplay list box at all
times.

[LB – Might be desirable to have this set automatically as part of FormLoad procedure
in the forms module.]

3. Set properties of cboRptChoice combo box:

e. Check SELECT statement specified in RowSource property

4. Check that reports to be provided as choices for the user are properly entered in records of the
report_use_local table to be selected by the RowSource query of the cboRptChoice combo
box.

Report Forms

Standard Report – 20Feb2004
The approach described here is intended for use in linking the user of “record selection” and “record
selection display” forms in the application with associated reports. Reports that do not intend to make
use of this type of integration need not follow the guidelines offered here.

This approach has now been implemented in another project that makes use of many of the same tools
as the Land Trust project, and the results seem very favorable with regard to flexibility, generality and
simplicity of use in composing additional reports that use the same central mechanism.

Construction of a report that makes use of the revised report row selection mechanism proceeds as
follows:

1. Construct an MS-Access query that describes the data to be included in the report.

Construct the query to provide only the data required by the report, and no additional data.
This approach will serve to minimize the amount of data being passed across the network from
server to client. Since the application is specifically destined for multiple-users in a networked
setting, such considerations are important.

This query will typically be used only during report construction. In it’s final form, the
constructed report will employ internal SQL statements rather than a predefined MS-Access
query. The constructed query only serves to ease report construction at its initiation. It is
recommended that the query be deleted after the construction of the associated report is
completed. Accordingly, it is useful to name this query in a way that indicates both the data

subject of the query and the fact that this query is only “temporary”. This will make it easier to
clean up the “artifacts” of the report construction process after completion.

2. The basic report is composed using either MS-Access report construction wizards or manual
design processes.

The report should be based on the query constructed in step 1.

3. Verify that the report is displaying data summaries in the fashion desired for the report.

4. Place an unbound text box control named “mtxtSelDesc” in the report header just below the
displayed form title.

This text box will be used programmatically to display a description of the query filter used to
define row selection when the report is executed. The size of the text box should be enlarged to
provide a capacity for displaying about 200-300 characters.

The Visible property of this control should be set to ‘no’.

It has been standard practice to center report titles and to specify the use of bold, 20 point text
for the report title.

5. Open the VisualBasic code module associated with the report and copy in all VisualBasic code
from a preexisting report code module using the revised filter mechanism (the
“Report_donation_rpt” module is a good choice as a code source).

6. Revise the RecordSource property of the report to include a copy of the SQL SELECT
statement defining the query from part one rather than the name of that query.

This is useful for two reasons:

First, replacement of the query reference with the associated SELECT statement allows
deletion of the query definition. This will help keep the number of objects included in
the application small and will make it easier to manage the application and it’s
maintenance. In addition, it may be desirable to allow some expert users to construct
custom queries for their own use. In such a case, it will be very desirable that no
queries essential for basic application operation remain in the queries collection of the
MS-Access database provided to the user.

Second, in some cases the user or developer may have a need to open the report in a
way that precludes the usual operation of the associated VB code module. In such a
case, the mechanisms usually applied by that code module to assign a value to the
RecordSource property may not be functioning. For this reason, it is useful to have the
SELECT statement defining the RecordSource property represented in both the default
RecordSource property of the report and in the associated VB code module.

7. In the report code module, alter the specification of the module-level constants
mstrcDisplayRowDesc, mstrcDisplayFromDesc, and mstrcDisplayWhereDesc to accurately
represent the SELECT statement of the SQL statement representing the query from step 1.

This is usually a relatively easily task for an intermediate to advanced SQL programmer. The
following sequence of steps facilitates the operation:

a. Open the query constructed in step 1, move to the “SQL view” of the query, and cut and
paste the full SQL statement to a text editor like Notepad, etc.

b. In the text editor, edit the SQL statement to visually separate the “row description”,
“from clause” and “where clause” components of the statement.

It is useful to add string delimiters (“) and VB continuation characters (‘ & _’) while
formatting the statement to neatly display the query. These additions are sometimes
easier within a text editor than within the VB editor. It is an advantage to make use of
VB continuations to present the statement in a very readable fashion within VB. It
really helps with troubleshooting, which is often needed.

c. Cut and paste each component into the declaration statement for the corresponding
constant.

If tables are named in a fashion that does not strictly require the use of square brackets around
table names and column names, readability of the statement will be improved by removing
them. In many cases, MS-Access automatically places these brackets within the SQL SELECT
statement representing a query, whether they are needed or not. Only in cases where column or
table names include spaces or other special characters are these absolutely needed. In other
situations, they create visual clutter for the programmer to wade through without really
providing compensating value.

Here is an example of the representation style that has been found most useful in development
work:

Rem Define base SELECT statement used to define rows used in report
Rem Row description should NOT include SELECT keyword
Private Const mstrcDisplayRowDesc As String = _
 "lq.loctn_id, " & _
 "lq.party_id, " & _
 "py.name AS party_name, " & _
 "ltq.abbr AS loctn_type, " & _
 "IIf(lq.primary_yn=Yes,""Yes"",""No"") AS primary, " & _
 "lq.organization_name AS loctn_name, " & _
 "lq.address_1, " & _
 "lq.address_2, " & _
 "lq.city, " & _
 "lq.state, " & _
 "lq.postal_code "

Rem FROM description should NOT include FROM keyword
Private Const mstrcDisplayFromDesc As String = _
 "loctn AS lq, " & _
 "loctn_type_defn AS ltq, " & _
 "party AS py "
Rem If ANSI SQL89 query style is used, the join description should _
 contain both join criteria AND row subselection criteria. If _
 ANSI SQL92 query stile is used, the join description will contain _
 only row subselection criteria, since join criteria will be _
 specified in the FROM clause using INNER JOIN, RIGHT JOIN, etc. _
 clauses
Private Const mstrcDisplayWhereDesc As String = _
 "py.party_id=lq.party_id " & _
 "AND lq.loctn_type_defn_id=ltq.loctn_type_defn_id "

8. Alter the value assigned to the module-level mlngcDataSubject constant to accurately
represent the data subject of the form.

The assigned value is provided as an argument to the basRptShared.RptFilterClear method
used in the Report_Close procedure. A public enumerated list defined in the basRptShared
module is used – the values presently defined for use are:

rfsContact

rfsCounty
rfsDonation
rfsEasement
rfsParty
rfsPerson

9. Alter the values assigned to the module-level constants mstrcIdCol and mstrcIdColAlias to
accurately specify the name of the primary key column that uniquely identifies each row to be
included in the report, and to accurately reflect the table alias used in the report’s base SELECT
statement to identify the table in which that column is located.

NOTE: The “alias” may in fact be the complete table name (i.e. “person”, etc.).

10. Modify the Report_Activate procedure.

The statement that assigns a value to the strSelDec variable must be altered to indicate the
retrieval of the correct property from the basShared module. The revised statement should look
like

strSelDesc = basShared.datasubjectSelDesc,

where datasubject is changed to reflect the basShared property that is set by the “selected
records display” form used to execute the report.

11. Check the “event” properties of the report to ensure that the following events trigger associated
“event procedures”:

a. On Open

b. On Close

c. On Activate

d. On No Data

12. A row should be added to the report_use_local table specifying the report_name and the name
of the “selected record display” form that is used to start the report.

Because the report includes VB code that specifically indicates a data subject, and a subject-
specific property retrieval from the basShared module, a report should probably be used in
coordination with only a single “record selection display” form. If a similar report is to be used
with a different “record selection display” form, a copy of the current report can be used to
streamline the set up of a report specific to that use.

Data Export Report – 20Feb2004
Automated exports of addresses, etc for selected rows is handled through very nearly the same
mechanism used for standard reports:

A. The user is expected to specify a record selection mechanism using the provided “record
selection” forms

B. The user moves to the associated “record selection display” form to review the results of their
specification.

C. The user selects a report designed for data export and triggers that report.

D. The report that is displayed also opens a pop-up window that allows the user to either cancel
the process or send the displayed report to a system file. The pop-up window and related
functions are the only difference between a data export report and a “standard” report.

Appendix A – Report Row Selection Mechanism History

Purpose
This appendix provides a description of the earlier mechanism proposed for use in linking reports with
“record selection display” forms, the liabilities of that approach, and the reasons for the proposed
design now implemented in the application

History

Initial Report Mechanism – 10Feb2004
NOTE: The mechanism currently employed in coordinating reports and associated “record selection”
forms still needs work. This section describes the current mechanism rather than that final
mechanism.

As of 12Feb2004, reports are expected to retrieve the query filter constructed by a record selection
form. The retrieved query filter is then added to the report’s already-defined base SELECT query.
When properly constructed, the report then details only the rows previewed in the associated “selected
records display” form.

The most complex issues with construction of report forms have to do with specification of SQL
SELECT statements defining the records to be represented on the report. These SELECT statements
must be constructed in a way that allows them to interact correctly with query filters constructed by a
“record selection” form and then eventually passed to the report. A coordinated approach to use of
table aliases in both “record selection” forms and reports is therefore required. A report will not run
correctly if the same table alias is used in different meanings in the report and in the query filter
constructed by an associated “record selection” form. Neither will a report run correctly if the retrieved
query filter employs table aliases that are not defined in the combined SELECT statement.

Typically, both reports and record selection forms can be considered to use a single table as the
“primary” table. The name of a the record selection form is usually an obvious indicator – for
example, the “party selection” form constructs query filters that use the “party” table as the “primary
table”. Each report should similarly focus on a single “primary table”, and should only accept query
filters from “record selection” forms that employ the same “primary table”.

1. Specify the base SELECT statement for the report in the mstrcDisplayBaseSelect constant
defined in the report’s module-level declaration section.

This constant should contain the “SELECT” keyword, the row description, the “FROM”
keyword and the table description portions of the SELECT statement. At present, a trailing
space is required to ensure proper concatenation of a WHERE clause to this value.

2. Specify the join description to be applied in the base SELECT statement for the report in the
mstrcDisplayJoinDesc constant defined in the report’s module-level declaration section.

3. The form’s RecordSource property may be set to any query specification that assists in initial
development and troubleshooting of the report. This may help the clarity of the overall report
for a developer, but the report form typically overwrites the RecordSource property with a
constructed SELECT statement at the time the report opens. That constructed statement
combines the values of the mstrcDisplayBaseSelect and mstrcDisplayJoinDesc variables and
the query filter passed to the report.

4. Check that the RecDisplayRowSource procedure correctly extracts the proper query filter.

This filter is usually extracted from a property defined in the basShared module, using a
statement like

strFilter = basShared.PartySelFilter

Proposal for Revised Report Row Selection Mechanism
NOTE: This proposal outlines essentially the same mechanism implemented and for which needed
modifications are outlined above.

After reviewing a few reports in some depth, I believe I now recall that this is an area where there is
still some "design" work to be done.

At present, a report accepts a query filter from an associated "record selection" form by extracting a
property value from the basShared module. Each "record selection" form stores the value of it's
constructed query filter there when a command to move to a "selected record display" form is issued.
So the filter is also then available for use by the report if the user requests the report.

There are two problems with this approach:

1. The set of tables that can be involved in any "record selection" query filter is quite variable.
The tables actually included in the filter expression depend on what controls the user chooses to
employ in their record selection specifications. It is probably desirable that a report NOT
include EVERY table that MIGHT be used in the SELECT statement defining it's row source.

2. The “record selection form” construction presently used in the application applies the older
style “WHERE exp1 AND exp2 AND…” style of specifying table joins, which will make it
difficult to use RIGHT JOIN and similar expressions in the base SELECT statement of a report.

There will probably be some reports that will require outer joins. I believe this will be difficult
with the current system of “passing a query filter”, since the clearest expression of an outer join
employs a fundamentally different approach to specifying table joins. Because the “query
filter” use under the proposed approach is very direct and simply, I believe it will be easier to
accommodate than the more complex and variable filter query typically obtained from a
“record selection form”.

My high-level concept for doing this more flexibly:

A. When a command to generate a report is issued, a procedure is run that fills writes the primary
key values of the selected records from the "primary table" in the report to a table in residing in
the server.

I think server location will enhance subsequent query performance, since all other data is also
resident there... It is desirable to avoid running queries that require major network traffic... The
server location will be particularly desirable if the final implementation includes a “server”
DBMS that supports stored procedures. In this case, it will be possible to simply call a “server”
procedure that performs this operation entirely within the server itself…I think this would
result in nearly the absolute minimum of network traffic for an MS-Access client/”server”
DBMS implementation approach.

B. The primary key values written to the "rpt_ids" table must be stamped with some “report
key”code that allows the "proper" client to then specify their use in the report's base query.

The value of this stamp could include username/timestamp, OR it could simply be a randomly
generated key, like a concatenation of 6 randomly selected characters each from the set
{01..9AB.Z}, etc. I believe the approach employing a random sequence of characters is
advantageous, requiring a value that is both simpler to generate, very easy to increase in size
and more compact for the same information content (Each character can hold something like 36
different values). This again would minimize network traffic and the tendency of the resulting
values to identify unique rows with reduced numbers of characters will convert into
performance advantages in most types of DBMS indexing.

C. The “report key” value is passed to the report.

D. The report module constructs a filter that includes an "IN (SELECT ri.id_val FROM
rpt_row_id AS ri WHERE rri.rpt_key='blahzzz')" subquery and modifies the report's base
SELECT query by including that condition when the report is run.

E. When the user closes the report, rows with the matching "use stamp" in the rpt_ids table are
deleted.

I THINK this would completely get around the issue of varying table involvements in reports... issues
of how to employ OUTER JOIN clauses in the base SELECT statement of a report, etc.

I believe the initial implementation would still place the rpt_row_id table in the server, even when that
server is an MS-Access Jet database. I do not believe that this approach would substantially increase
the amount of network traffic caused within an all-Jet implementation, and I feel it would lay the
groundwork for a later transition to a server DBMS supporting stored procedures.

NOTE: I’ve prototyped this approach and gotten it pretty close to the form that would be required for
final implementation. (This required about 10 hours of programming, and perhaps 4-5 hours of
“thinking/planning” time.) The prototype is in the test.mdb database. Queries in this database illustrate
that this approach allows the use of both ANSI 89 SQL and ANSI 92 SQL to define the base SELECT
statement for the report. This flexibility allows the developer to employ classic uses of FROM and
WHERE clauses to define equi-joins, or the more modern INNER JOIN, LEFT JOIN, RIGHT JOIN
approaches of the more recent ANSI SQL standards.

	Purpose
	Copyright/License
	Edit Forms
	Donation Edit Form
	Record Selection Form
	Selected Records Display Form
	Report Forms
	Standard Report – 20Feb2004
	Data Export Report – 20Feb2004

	Purpose
	History
	Initial Report Mechanism – 10Feb2004
	Proposal for Revised Report Row Selection Mechanism

